
An Efficient Barrett Reduction Algorithm for

Gaussian Integer Moduli

Malek Safieh, Andreas Furch, Fabrizio De Santis

Siemens AG, Technology, Munich, Germany

{malek.safieh, andreas.furch, fabrizio.desantis}@siemens.com

Abstract—Gaussian integers are a subset of complex numbers
that have integer numbers in both their real and imaginary parts.
Similar to ordinary integer numbers, they can be equipped with
modulo operations, which creates Gaussian integer rings and
fields. Depending on the chosen modulus, these structures can
be isomorphic to corresponding algebraic structures over integer
numbers. However, computing modulo reduction for Gaussian
integers can be computationally expensive, especially when the
modulus itself is a Gaussian integer.

In this work, we present a novel and efficient reduction algo-
rithm for Gaussian integer moduli of arbitrary form based on the
ideas of Barrett reduction for integer numbers. We show that the
computational complexity of our proposed reduction algorithm
is equivalent to previously known Montgomery reduction over
Gaussian integers. However, unlike Montgomery’s approach, our
algorithm does not require domain transformations and can be
more advantageous in various circumstances.

Keywords-Gaussian Integers, Modular Arithmetic, Modulo Re-
duction, Barrett Reduction.

I. INTRODUCTION

The set of Gaussian integers, denoted by Z[i], is a subset

of complex numbers that comprises all elements of the form

a+ bi, where a and b are integers and i is the imaginary unit,

i.e., i =
√
−1. In other words, Z[i] is defined as the set of all

a+ bi ∈ C | a, b ∈ Z. The arithmetic properties of Gaussian

integers are analogous to those of integer numbers, enabling

the construction of finite rings and fields through Gaussian

integer modulo reduction. Depending on the chosen Gaussian

integer modulus, a finite Gaussian integer ring or Gaussian

integer field can be constructed.

Gaussian integers find applications in the field of algebraic

coding, as discussed in [8], while more recent proposals can

be found in [6], [13], [16]. In the field of cryptography,

Gaussian integers have been explored to create variants of RSA

cryptosystem [4], [10], [11], [12], Rabin cryptosystem [1],

and McEliece cryptosystem [7]. Fast arithmetic over Gaussian

integers has been proposed in [18], [19] to speed up scalar

multiplication on some types of elliptic curves.

While basic arithmetic operations on Gaussian integers can

be implemented efficiently, Gaussian integer modulo reduction

is typically rather inefficient when implemented straightfor-

wardly. This is because it involves a Gaussian integer division,

which in turn requires two integer divisions and rounding op-

erations on the real and imaginary parts of a Gaussian rational

number. As a result, more efficient reduction mechanisms for

Gaussian integers are required to enable fast computations for

Gaussian integer rings or fields.

In recent years, fast reduction algorithms for general Gaus-

sian integers based on Montgomery modular arithmetic have

been proposed, cf. [11], [12], [18], [19]. Furthermore, efficient

reduction algorithms for Gaussian integer moduli of special

forms have been presented in [20].

In general, efficient reduction algorithms employ two steps.

The first step involves calculating a congruent solution using

elementary arithmetic operations such as additions, subtrac-

tions, and multiplications, as well as digit operations like

shifts and truncations. In the second step, a final reduction

is performed to obtain the fully reduced result. While the final

reduction step for integer numbers is typically straightforward

and involves integer subtractions only, it is not as simple for

Gaussian integers. This is because it requires the computation

and comparison of multiple norm values, as shown in [18].

In this work, we apply the ideas of Barrett reduction

for integer numbers to derive an efficient modulo reduction

algorithm for Gaussian integer moduli of arbitrary form. In

particular, we adapt Barrett’s modulo reduction from [3],

[5], [9], and take the advantage of the final reduction for

Gaussian integers from [18], in order to derive a modulo

reduction algorithm suitable for arbitrary Gaussian integer

moduli. The proposed reduction algorithm is an alternative

to the Montgomery reduction algorithm presented in [19]

with equivalent computational complexity. However, unlike

Montgomery’s approach, our algorithm does not necessitate

domain transformations to obtain the final reduced result.

This allows for saving the costs of one multiplication and a

complete Montgomery reduction for the transformation into

the Montgomery domain, as well as the costs for one extra

Montgomery reduction for the backward transformation from

the Montgomery domain. Consequently, compared with the

Montgomery reduction, the computational efficiency can be

significantly increased using the proposed reduction, especially

when only a few intermediate results have to be calculated

until the final result is required.

Organization

The article is organized as follows: in Section II, we provide

background information on Gaussian integer arithmetic and

illustrate the Barrett reduction algorithm for integer numbers.

In Section III, we first discuss the issues of directly applying

this reduction algorithm to Gaussian integers, and then derive a

new reduction algorithm suitable for Gaussian integer moduli

of arbitrary form. In Section IV, we discuss implementation

aspects of the proposed reduction algorithm, presenting the

results of complexity analysis, and comparing them to Mont-

gomery reduction for Gaussian integers. Finally, conclusions

are provided in Section V.

II. PRELIMINARIES

This section provides a brief overview of Gaussian integers

and the Barrett modulo reduction algorithm for integer num-

bers.

A. Gaussian Integers

Gaussian integers are a subset of complex numbers where

both the real and imaginary parts are integers, denoted as

Z[i] = {a + bi ∈ C : a, b ∈ Z, i =
√
−1}. When the complex

operations of addition and multiplication are performed on

Gaussian integers, modulo π, a finite ring or field is formed,

depending on the particular choice of the modulus π.

Suppose p = ππ∗ is an integer prime number such that

p ≡ 1 mod 4, where π∗ is the complex conjugate of π. In this

case, the set of Gaussian integers taken modulo π together with

the complex operations of addition and multiplication modulo

π forms a Gaussian integer field denoted by Gp:

Gp = {z mod π : z, π ∈ Z[i]}. (1)

This field is isomorphic to the integer prime field Zp, as

demonstrated in [8].

The isomorphism φ : Zp → Gp maps an integer s ∈ Zp

to a Gaussian integer z ∈ Gp via Gaussian integer modulo

reduction z = s mod π. This mapping is bijective, meaning

that each element in Zp is uniquely mapped to an element

in Gp, and vice versa. The inverse mapping φ′ : Gp → Zp

bijectively maps a Gaussian integer z ∈ Gp back to an element

s ∈ Zp as follows:

s = (zuπ∗ + z∗vπ) mod p, (2)

where z∗ is the complex conjugate of the Gaussian integer z,

and (u, v) are defined as 1 = vπ + uπ∗. These coefficients

can be obtained using the extended Euclidean algorithm, as

described in [8].

Suppose n = pq = ππ∗ is the product of two prime integer

numbers p and q such that p ≡ q ≡ 1 mod 4 with p 6= q and

π, π∗ ∈ Z[i]. In this case, the set Gn = z mod π, z ∈ Z[i],
together with the operations of addition and multiplication

modulo π, forms a Gaussian integer finite ring. This ring is

isomorphic to the integer modular ring Zn, as shown in [6].

In this paper, we use Re {z} and Im {z} to denote the

real and imaginary parts of any Gaussian integer z ∈ Z[i],
respectively. Additionally, we utilize the absolute value |z| =√
zz∗ =

√
a2 + b2 to measure the norm of a Gaussian integer

z = a+ bi.
The addition of two Gaussian integers x = a + bi and

y = c+ di can be computed using just 2 integer additions, as

follows: x+y = (a+c)+(b+d)i. Similarly, the multiplication

of two Gaussian integers x = a + bi and y = c + di

can be computed using 3 integer multiplications, 2 integer

additions, and 3 integer subtractions. Specifically, we have

xy = (v2 − v3) + (v1 − v2 − v3)i, where v1 = (a+ b)(c+ d),
v2 = ac, and v3 = bd.

Let z, π ∈ Z[i] be Gaussian integers with π 6= 0. The

naı̈ve way of computing a Gaussian integer modulo reduction

z mod π consists of 3 complex multiplications†, 1 complex

subtraction, 1 complex division, and 1 complex rounding

operation‡ as shown in [8]:

z mod π = z −
[

zπ∗

ππ∗

]

π. (3)

A more efficient reduction algorithm for Gaussian inte-

gers, based on the idea of Montgomery reduction for integer

numbers, has been introduced in [18] and is illustrated in

Appendix VI-B for the convenience of the reader.”

B. Barrett Reduction

Given two integer numbers z and m, Barrett’s reduction

algorithm computes the remainder r = z mod m, where

z = qm + r in an efficient way. The main idea of Barrett’s

reduction algorithm is to find an approximation for the quotient

q using elementary operations, and arrive at the final result

r by subtractions of the modulo m. Barrett reduction was

introduced in [2] and is illustrated in Alg. 1. This algorithm

exploits a precomputed quantity µ =
⌊

β2k/m
⌋

to reduce

the complexity of the modulo reduction, where k denotes

the bit-length of m. The radix is typically chosen to match

the word-size of the underlying processor, in order to speed

up arithmetic operations by employing only digit shifts and

truncations [14].

Algorithm 1 Barrett Reduction Alg. [14, Alg. 14.42].

Input: Two positive integer numbers z and m,

µ =
⌊

β2k/m
⌋

, β > 3
Output: Integer number r = z mod m

1: q1 ←
⌊

z/βk−1
⌋

2: q2 ← q1µ
3: q3 ←

⌊

q2/β
k+1
⌋

4: r1 ← z mod βk+1

5: r2 ← q3m mod βk+1

6: r′ ← r1 − r2
7: if (r′ < 0) then

8: r′ ← r′ + βk+1

9: end if

10: while (r′ ≥ m) do

11: r′ ← r′ −m
12: end while

13: r ← r′

14: return r

†If ππ∗ can be precomputed, then only 2 complex multiplications are
required.

‡The brackets [·] denote rounding to the closest Gaussian integer, i.e.,
[a+ bi] = [a] + [b] i.

In particular, lines 1-9 of Alg. 1 efficiently reduce the input

z to a congruent solution r′. Successively, the congruent r′ is

possibly further reduced in line 10 to 12 to obtain the final

result r. We refer to this latter procedure as the final reduction.

According to [14, Note 14.44], the final reduction is repeated

at most twice, which can be simply implemented using com-

parisons and integer subtractions for integer numbers.

An improved version of the Barrett reduction, which reduces

the number of iterations for the final reduction to at most one

was presented by [3], [5], [9]. This improved version replaces

the approximation of the quotient q3 calculated on lines 1-3

of Alg. 1

q3 =

⌊

z
βk−1

⌋⌊

β2k

m

⌋

βk+1

, (4)

with the following approximated quotient:

q3 =

⌊

z
βk+δ

⌋⌊

βk+γ

m

⌋

βγ−δ

, (5)

where the optimal values for γ and δ can be determined

according to the word size of the underlying processor [3],

[5], [9].

III. BARRETT MODULO REDUCTION FOR GAUSSIAN

INTEGERS

In this section, we present a novel modulo reduction algo-

rithm for Gaussian integers, which draws inspiration from the

Barrett reduction technique (cf. Alg. 1).

Before starting, we highlight the major differences when

working with Gaussian integers: the final reduction for Gaus-

sian integers [17], [18], [19], [20] is considerably more

expensive. Hence, it is imperative to identify a congruent

solution that is as small as possible, in order to mitigate the

high costs associated with the final reduction step. This can

be done by taking inspiration from the improved version of

the Barrett reduction [3], [5], [9] which allows for minimal

costs on integer numbers, and adapting it to support Gaussian

integers. This adaption firstly requires, replacing the floor

divisions (cf. µ, lines 1 and 3 in Alg. 1) with appropriate

rounding functions suitable for Gaussian integers to obtain to

the smallest congruent. Secondly, changes to the associated

values for γ and δ are necessary in order to guarantee the

correctness of the reduction algorithm for Gaussian integers.

Third, there is no need to correct negative values back to

positive domain (cf. lines 7-8 of Alg. 1), as Gaussian integers

already consist of positive and negative integers (for real and

imaginary parts), hence no further correction is required in the

final reduction.

We proceed as follows: first, we describe a variant of Alg. 1

that supports Gaussian integers. Next, we demonstrate that this

algorithm always obtains a congruent solution r′. Then, we

show how to obtain the final result r from r′ by bounding the

absolute values. Afterwards, we consider an efficient method

to perform the final reduction for the proposed algorithm based

on |r′|, and demonstrate that it always leads to the desired final

result that would be obtained using Eq. (3). Finally, we provide

an example (cf. Example 2) to exhibit higher efficiency for the

final reduction using the signs of the real and imaginary parts

of the resulting congruent.

The proposed algorithm that supports Gaussian integers is

illustrated in Alg. 2. In line 6 of this algorithm, we subtract

a multiple of π from z. Obviously, this always results in the

congruent

r′ = r1 − r2 = z − q3π ≡ z −
[z

π

]

π = r, (6)

since q3, z, r′, and π are Gaussian integers and r = z−[z/π]π
is the final result, cf. Eq. (3).

In order to determine a congruent solution r′ that is as

small as possible, we should efficiently calculate the quotient

q3, which is as near as possible to [z/π] from Eq. (3).

Since Gaussian integers include signed integers for real and

imaginary parts, we define the function fdiv as an efficient

Gaussian integer division with rounding towards zero, i.e., for

any Gaussian integers x and y 6= 0, we have

x fdiv y = s(Re

{

x

y

}

)

⌊
∣

∣

∣

∣

Re

{

x

y

}
∣

∣

∣

∣

⌋

(7)

+ s(Im

{

x

y

}

)

⌊∣

∣

∣

∣

Im

{

x

y

}∣

∣

∣

∣

⌋

i,

where s(·) denotes the sign function. Similarly, we define the

function cdiv as an efficient Gaussian integer division with

rounding away from zero as follows:

x cdiv y = s(Re

{

x

y

}

)

⌈∣

∣

∣

∣

Re

{

x

y

}∣

∣

∣

∣

⌉

(8)

+ s(Im

{

x

y

}

)

⌈∣

∣

∣

∣

Im

{

x

y

}∣

∣

∣

∣

⌉

i.

Note that Eq. (7) can be implemented using digit shifts, e.g.,

if y is a power of the basis β. Similarly, Eq. (8) can be

implemented using digit shifts and addition of the constant

value 1.

The following example illustrates the rounding functions

defined in Eq. (3), Eq. (7), and Eq. (8), respectively.

Example 1. Let x = 5+4i and y = 3, we have x/y ≈ 1.66+
1.33i, z fdiv y = 1 + i, z cdiv y = 2 + 2i, and [z/y] = 2 + i.
Similarly, for x = −4 − 5i, we have x/y ≈ −1.33 − 1.66i,
z fdiv y = −1− i, z cdiv y = −2− 2i, and [z/y] = −1− 2i.

Next, we demonstrate that Alg. 2 always obtains the final

result as Eq. (3). We proceed with the following lemma which

provides basic bounds.

Algorithm 2 Barrett reduction for any Gaussian integer z and

the modulus π 6= 0 with |z| ≤
∣

∣π2
∣

∣ , where |Re {π}| < βk,

|Im {π}| < βk, and β is the chosen basis. The Gaussian

integer µ = βk+γ cdiv π can be precomputed and stored,

where γ ≥ k + 3 and δ ≤ −3.

input: Gaussian integers z, µ, π, integer numbers β, γ, δ
output: Gaussian integer r = z mod π

1: q1 ← z cdiv βk+δ

2: q2 ← q1µ
3: q3 ← q2 fdiv β

γ−δ

4: r1 ← z mod βγ−δ

5: r2 ← q3π mod βγ−δ

6: r′ ← r1 − r2
7: if (|r′| < |π| (

√
2− 1)/

√
2) then

8: α← 0
9: else if (|r′| < |π| /

√
2) then

10: α← argminα̂∈{0,±1,±i} |r′ − α̂π|
11: else

12: α← argminα̂∈{±1,±i,±1±i} |r′ − α̂π|
13: end if

14: r ← r′ − απ
15: return r

Lemma 1. For any two Gaussian integers x, y, and a quotient

Q = [x/y], where y 6= 0, it holds

|x fdiv y| ≤
∣

∣

∣

∣

x

y

∣

∣

∣

∣

≤ |x cdiv y| , (9)

|Q| −
√
2 ≤ |x fdiv y| , (10)

|x cdiv y| <
∣

∣

∣

∣

x

y

∣

∣

∣

∣

+
√
2, (11)

∣

∣

∣

∣

x

y

∣

∣

∣

∣

≤ |Q|+ 1√
2
. (12)

Proof: Eq. (9) directly follows from the definition of the

fdiv function (rounding towards zero), and the definition of the

cdiv function (rounding away from zero). Let x fdiv y −Q =
c+di. Due to the difference between the rounding to the nearest

Gaussian integer and the rounding towards zero function, cf.

Eq. (7), we have 0 ≤ |c| ≤ 1, 0 ≤ |d| ≤ 1. This results in

0 ≤ |c+ di| ≤
√
2,

and the upper bound in Eq. (10) holds. Similarly, for x/y −
x cdiv y = e + f i we have 0 ≤ |e| < 1, 0 ≤ |f | < 1, due to

the difference between the regular division and the rounding

away from zero function, cf. Eq. (8). This results in

0 ≤ |e+ f i| <
√
2,

and the upper bound in Eq. (11) holds. Finally, let x/y−Q =
g + hi. Due to the rounding to the nearest Gaussian integer

function, we have 0 ≤ |g| ≤ 1/2, 0 ≤ |h| ≤ 1/2. This results

in

0 ≤ |g + hi| ≤ 1√
2
,

and the upper bound in Eq. (12) holds.

In line 3 of Alg. 2, we observe that

q3 = q2 fdiv β
γ−δ = q1µ fdiv βγ−δ

= (z cdiv βk+δ) · (βk+γ cdiv π) fdiv βγ−δ.

Next, we bound the absolute value of the quotient q3 using

Eq. (9):
∣

∣

∣

∣

(
z

βk+δ
) · (β

k+γ

π
) fdiv βγ−δ

∣

∣

∣

∣

≤
∣

∣(z cdiv βk+δ) · (βk+γ cdiv π) fdiv βγ−δ
∣

∣ = |q3|

≤
∣

∣

∣

∣

(z cdiv βk+δ) · (βk+γ cdiv π)

βγ−δ

∣

∣

∣

∣

. (13)

In the following, we denote the quotient from Eq. (3) as

Q = [z/π]. Now, considering the lower bound of |q3| from

Eq. (13), we have that

|q3| ≥
∣

∣

∣

z

π
· βγ−δ

∣

∣

∣
fdiv βγ−δ = |z fdiv π| ≥ |Q| −

√
2, (14)

where we used the lower bound from Eq. (10). Consequently,

using Eq. (14), we can bound the difference between the

absolute values of Q and q3 as follows:

|Q| − |q3| ≤
√
2. (15)

According to Eq. (11), we obtain the upper bound of |q3|
from Eq. (13) as follows:

|q3| <

(
∣

∣

∣

z
βk+δ

∣

∣

∣
+
√
2
)(
∣

∣

∣

βk+γ

π

∣

∣

∣
+
√
2
)

|βγ−δ| ,

|q3| <

∣

∣

∣

z
βk+δ

∣

∣

∣

∣

∣

∣

βk+γ

π

∣

∣

∣
+
√
2
(∣

∣

∣

z
βk+δ

∣

∣

∣
+
∣

∣

∣

βk+γ

π

∣

∣

∣
+
√
2
)

|βγ−δ| ,

|q3| <
∣

∣

∣

z

π

∣

∣

∣
+
√
2

(

∣

∣

∣

∣

z

βk+γ

∣

∣

∣

∣

+

∣

∣

∣

∣

βk+δ

π

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

√
2

βγ−δ

∣

∣

∣

∣

∣

)

.

Now, using the upper bound of Eq. (12) from Lemma 1, we

can estimate the difference between the absolute values of the

quotients as

|q3|−|Q| <
√
2

(

∣

∣

∣

∣

z

βk+γ

∣

∣

∣

∣

+

∣

∣

∣

∣

βk+δ

π

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

√
2

βγ−δ

∣

∣

∣

∣

∣

)

+
1√
2
. (16)

Without loss of generality, we assume a modulus π ∈ Z[i]
with Re {π} > Im {π} ≥ 0, where Re {π} has k digits and

the most significant digit is different from zero:

βk−1 < |Re {π}| < βk,

0 < |Im {π}| .

Assuming two Gaussian integers x and y with at most k digits

in their real and imaginary parts, we can bound the real and

imaginary parts of their product z = xy as follows:

0 ≤ |Re {z}| , |Im {z}| < β2k. (17)

Hence, we can bound the absolute values of π and z as

|π| >
√

0 + (βk−1)2 = βk−1, (18)

|z| <
√

(β2k)2 + (β2k)2 =
√
2β2k. (19)

Substituting both Eq. (18) and Eq. (19) in Eq. (16) results in

|q3| − |Q| <
√
2

(∣

∣

∣

∣

∣

√
2β2k

βk+γ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

βk+δ

βk−1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

√
2

βγ−δ

∣

∣

∣

∣

∣

)

+
1√
2
,

(20)

|q3| − |Q| < 2
∣

∣βk−γ
∣

∣+
√
2
∣

∣βδ+1
∣

∣+ 2
∣

∣βδ−γ
∣

∣+
1√
2
. (21)

Please note that basis β is typically a power of two that

matches the word size of the processor being considered.

Suppose, for example, a binary basis, i.e., β = 2, we obtain

|q3| − |Q| < 2 · 2k−γ +
√
2 · 2δ+1 + 2 · 2δ−γ +

1√
2
. (22)

Now, let ǫ = 2 · 2k−γ +
√
2 · 2δ+1 + 2 · 2δ−γ + 1√

2
, with

γ ≥ k + 3, δ ≤ −3, we get

0 < 2 · 2k−γ + 2 · 2δ−γ ≤ 1

4
+

2

2k+6
, (23)

0 <
√
2 · 2δ+1 ≤

√
2

4
, (24)

|q3| − |Q| < ǫ ≤ 1 +
√
2

4
+

2

2k+6
+

1√
2
< 1.33 <

√
2, (25)

where we assumed an extreme case with k = 1 to obtain a

maximum for ǫ, i.e., the difference between |Q| and |q3|, cf.

Eq. (25). In general, using γ ≥ k+3 and δ ≤ −3, the resulting

upper bound will decrease when increasing the base β, e.g.,

consider the case for k = 1, we have ǫ < 0.83 for β = 4 and

ǫ < 0.71 for β = 32.

In conclusion, with Eq. (15) and Eq. (25), we have proved

that the upper bound for the difference between the absolute

value of q3 (resulting from Alg. 2) and of Q (for the final

result, cf. Eq. (3)) is at most
√
2. Next, we demonstrate how

to obtain the final result of Eq. (3) after line 6 of Alg. 2 using

the following lemma.

Lemma 2. Let Gn be any Gaussian integer ring, with n =
ππ∗. For any z 6∈ Gn and r = z mod π ∈ Gn, we have

|r| < |z| . (26)

We refer to [18, Lemma 1] for the derivation.

We aim to compensate the difference between Q and q3
using a corresponding offset α, i.e., we obtain the final result

after line 6 of Alg. 2 as

r = r′ − απ. (27)

Since the distance between |Q| and |q3| is bounded by
√
2

(cf. Eq. (15) and Eq. (25)), we consider all possible offset

candidates for α to identify the correct offset candidate. The

offset α must be a Gaussian integer, since r, r′, and π are

Gaussian integers. Consequently, using the upper bound
√
2 =

|±1± i| from Eq. (15) and (25), we may restrict the possible

offset candidates based on the absolute value to

α ∈ 0,±1,±i,±1± i. (28)

Consequently, substituting all possible candidates for α in

Eq (27) results in nine different congruent solutions.

However, according to Lemma 2, the final result can be

obtained by minimizing the absolute value over all possible

offset candidates from Eq. (28) as

r = r′ − απ, (29)

α = argmin
α̂∈{0,±1,±i,±1±i}

|r′ − α̂π|. (30)

Minimizing the absolute value over nine different offsets to

obtain the final result r may be costly for some applications.

Hence, we demonstrate in the following that the number of

possible offset candidates can be reduced based on |r′|.
Lemma 3. For any r that is an element of the Gaussian integer

ring Gn, n = ππ∗, we have

|r| < |π|√
2
, (31)

cf. [18, Lemma 1] for the derivation.

To efficiently determine a final result, we use Lemma 3

and the following bounds to restrict the required number of

comparisons to obtain the final result.

For |r′| <
√
2−1√
2
|π|, we already have the unique result, i.e.,

r = r′. For
√
2−1√
2
|π| ≤ |r′| < |π|√

2
, minimizing the absolute

value over the following offset candidates α̂ is sufficient to

determine the correct offset

α = argmin
α̂∈{0,±1,±i}

|r′ − α̂π|. (32)

Otherwise, we have

α = argmin
α̂∈{±1,±i,±1±i}

|r′ − α̂π|. (33)

According to Eq. (32) and Eq. (33), up to nine offset

candidates α̂ may be needed. Nonetheless, not all potential

offsets have to be considered. These potential offsets may be

further reduced based on the sign of Re {r′} and Im {r′}, i.e.,

because we can restrict the quadrant of interest. This procedure

is illustrated in Example 2.

Example 2. Let π = 8+3i, we have p = ππ∗ = 73 and the set

Gp is a Gaussian integer field isomorphic to the field Zp over

ordinary integers. Figure 1 demonstrates all possible elements

from G73 with blue points and the origin. Consider for example

the multiplication of the two field elements x = 3 + 2i and

y = 2+2i, we get z = xy = 2+10i. Now, apply the reduction

according to Alg. 2 for example with β = 2, γ = k + 3,

δ = −3, and hence µ = 56 − 21i. Line 3 of this algorithm

results in q3 = i, and line 6 in r′ = 5 + 2i. For the absolute

value we get 2.50 ≈
√
2−1√
2
|π| < |r′| =

√
29 ≈ 5.39 < |π|√

2
≈

6.04. Hence, we determine the correct representative using the

offsets in line 10 of Alg. 2. Since r′ is in the first quadrant, we

−15 −10 −5 0 5 10 15
Real

−15

−10

−5

0

5

10

15

Im
ag

in
ar
y

Fig. 1. Example for p = 73 and π = 8 + 3i. Elements of the Gaussian
integer field G73 are the origin and the blue points around the origin. Possible
offsets according to Eq. (28) are depicted in black points. All points with other
colors illustrate the sum of field elements with an offset from Eq. (28).

get only three possible offset candidates, i.e., α̂ ∈ {0, 1,−i}.
Consequently, computing |r′ − 0| ≈ 5.39, |r′ − π| ≈ 3.16,

and |r′ − iπ| ≈ 10.0 leads to α = −1. Finally, we obtain the

final result in line 14 of Alg. 2 as r = r′ − απ = −3− i.

IV. DISCUSSION

In this section, we discuss implementation aspects related

to Alg. 2. First, we show how that the Manhattan weight

can be used for fast reduction to obtain smaller congruent

solutions. Then, we perform a complexity analysis showing

that the proposed method is more efficient than the naive

reduction approach and has equivalent complexity compared

with Montgomery reduction [18], but does not require addi-

tional operations for domain transformations.

A. Fast Reduction with Manhattan Weight

In previous sections, we used the absolute value of a

Gaussian integer to measure its norm for offset comparisons

in the final reduction (cf. Eq. (32) and Eq. (33)). However,

calculating the absolute value of a Gaussian integer and

performing comparison can be computationally expensive and

inefficient.

To address these issues, one could adopt the approach pre-

sented in [18] for fast reduction, which replaces the absolute

value by the Manhattan weight of a Gaussian integer. This

approach reduces computational complexity and improves effi-

ciency. The Manhattan weight of a Gaussian integer x = a+bi
is defined as ‖x‖ = |a| + |b|. This weight is calculated by

adding the magnitudes of the real and imaginary parts of the

Gaussian integer x = a + bi, while ignoring their signs of a
and b.

Note that |x| ≤ ‖x‖ holds for any Gaussian integer x.

This can be seen by squaring both sides of the inequality,

we refer to [18] for further derivations. Alg. 3 illustrates the

final reduction using Manhattan weight, which may be used

to replace lines 7-15 of Alg. 2. The number of possible offset

candidates α̂π in line 1 of Alg. 3 may be further reduced

based on the signs of Re {r′} and Im {r′}, as illustrated in

Example 2. An alternative version of Alg. 2 using Manhattan

weight for fast reduction is reported in the Appendix VI-C for

the convenience of the reader.

It is worth mentioning that the final reduction step using the

Manhattan weight method may not always result in a unique

solution. In fact, there are at most two possible solutions that

are congruent [18]. Despite this, the Manhattan weight method

remains a useful tool for applications that require obtaining a

smaller congruent solution for intermediate results. The final

result can still be determined using the final reduction step

outlined in Alg. 2.

Algorithm 3 Fast Reduction using Manhattan Weight.

Input: Gaussian integers r′, π s.t. r ≡ r′ mod π and

|r′| ≤
√
2 |π|

Output: r ≡ r′ mod π and |r| ≤ |r′|
1: α← argminα̂∈{0,±1,±i,±i±i} ‖r′ − α̂π‖
2: r ← r′ − απ
3: return r

B. Complexity Analysis

In the following, we compare the computational complexity

of our proposed reduction algorithms with that of existing

reduction methods, i.e., the naive reduction of Eq. (3) and

Montgomery reduction algorithm for Gaussian integers [18].

We have not included a comparison with efficient reduction

algorithm for Gaussian integers proposed in [20], as this latter

is optimized for specific Gaussian integer moduli of special

forms, hence not suitable for general usage. Also note that

we can safely neglect the complexity requirements of the

final reduction, as all the considered algorithms use the same

procedure for final reduction.

When considering Alg. 2, it is possible to neglect the costs

associated with calculating µ, as it can be precomputed once

and stored, particularly if the modulus π is fixed. Lines 1-6

of this algorithm require digit operations, two multiplications,

and one subtraction for Gaussian integers. It is worth noting

that the fdiv function utilized to compute q3 can be imple-

mented using simple digit shifts. On the other hand, the cdiv
function used to compute q1 and µ may require an additional

step of adding a constant 1 to the real and imaginary parts,

respectively. Similarly, the modulo functions to determine r1
and r2 can be implemented using truncations on the real and

imaginary parts. Additionally, if the Gaussian integer modulus

π is fixed, then the costs for the two multiplications are

reduced to two multiplications by a constant, i.e., µ and π.

The complexity of a fast reduction using the Manhattan

weight depends on the signs of Re {r′} and Im {r′}. In worst

case, it accounts for 9 complex subtractions, since all nine α̂π
values may be precomputed, cf. Eq. (32) and Eq. (33). Addi-

tionally, the Manhattan weight must be computed 9 times using

9 integer additions, i.e., additions of the real and imaginary

parts (cf. Sec. IV-A). Please note that in some applications,

it is sufficient to determine a congruent r′ ≡ z mod π and

neglect the final reduction for all intermediate results, i.e.,

until the final result is required. This holds for both Barrett

and Montgomery reduction algorithms on Gaussian integers.

The complexity of all considered algorithms is summarized

in Table I, reporting the required number of complex arith-

metic operations. Truncations and digit shifts are not included,

since they can be implemented efficiently. Table I shows that a

naive reduction technique requires one complex division (i.e.,

two integer divisions for real and imaginary parts), and hence

is not suitable for efficient implementations.

The required complex arithmetic operations for the Mont-

gomery approach from [18] include the costs for Montgomery

reduction algorithm, as well as for both the forward and

backward domain transformations. The costs for the forward

transformation can be approximated by a complex multiplica-

tion as well as the costs for a complete Montgomery reduction

algorithm from [18]. Similarly, 1 extra complete Montgomery

reduction is employed for the backward transformation (cf.

Appendix VI-B). We estimate the costs for the Montgomery

reduction with 2 complex multiplications and 1 complex

addition (without costs for the final reduction). Hence, these

transformations for the Montgomery domain using Gaussian

integers can be estimated with at least 5 complex multiplica-

tions and 2 complex additions.

These domain transformations, and hence the corresponding

costs are not required for the proposed reduction algorithm,

which increases the computational efficiency, especially if the

final result is required after a few number of intermediate

results. For example, the multiplication of two Gaussian

integers with a modulo reduction would employ 8 complex

multiplications and 3 complex additions, for the forward

transformation, the calculation in the Montgomery domain

including modulo reduction, and transforming the result back

into the ordinary domain. Using the proposed algorithm only

3 complex multiplications and 1 complex addition are needed,

since the calculation is done in the ordinary domain.

TABLE I
NUMBER OF REQUIRED COMPLEX ARITHMETIC OPERATIONS. COSTS FOR

MONTGOMERY DOMAIN TRANSFORMATIONS ARE ACCOUNTED IN THE

TABLE, BUT THE COSTS FOR FINAL REDUCTION ARE LEFT OUT FOR BOTH

MONTGOMERY AND BARRETT (ALG. 2) SINCE THEY ARE JUST THE SAME.

Addition /
Subtraction

Multiplication
by a constant

Division

Barrett
Reduction Alg. 2

1 2 -

Montgomery
Reduction [18]

1 2 -

Montgomery
Transformations [18]

2 5 -

Naive
Reduction Eq. (3)

1 2 1

V. CONCLUSION

In this paper, we presented an efficient reduction algorithm

for arbitrary Gaussian integer moduli that builds on the ideas

of Barrett reduction for integer numbers. Our proposed algo-

rithm involves only basic arithmetic operations such as integer

multiplications, additions, subtractions, and simple digit oper-

ations. It has a computational complexity that is comparable

to the Montgomery reduction algorithm on Gaussian integer

moduli. The key advantage of our proposed method is that

it does not entail the costs associated with the Montgomery

domain transformation, making it more advantageous in many

practical cases.

REFERENCES

[1] Y. Awad, A. N. El-Kassar, and T. Kadri, Rabin Public-Key Cryptosystem

in the Domain of Gaussian Integers, In: International Conference on
Computer and Applications (ICCA). Aug. 2018, pp. 336–340.

[2] P. Barrett, Implementing the Rivest Shamir and Adleman Public Key

Encryption Algorithm on a Standard Digital Signal Processor, Advances
in Cryptology – CRYPTO’ 86, pp.311-326, 1986.

[3] J.-F. Dhem, Modified Version of the Barrett Algorithm,. technical report,
1994.

[4] H. Elkamchouchi, K. Elshenawy, and H. Shaban, Extended RSA cryp-

tosystem and digital signature schemes in the domain of Gaussian

integers, In: The 8th International Conference on Communication Systems
(ICCS). Vol. 1. Nov. 2002, 91–95 vol.1.

[5] N. Emmart, F. Zheng and C. Weems, A New Variant of the Barrett

Algorithm Applied to Quotient Selection,. In: 2018 IEEE 25th Symposium
on Computer Arithmetic (ARITH), 2018, pp. 138-144.

[6] J. Freudenberger, F. Ghaboussi, and S. Shavgulidze, New Coding Tech-

niques for Codes over Gaussian Integers, In: IEEE Transactions on
Communications 61.8, Aug. 2013, pp. 3114–3124. ISSN: 0090-6778.

[7] J. Freudenberger and J. P. Thiers, A New Class of Q-Ary Codes for the

McEliece Cryptosystem, In: Cryptography 5.1, 2021. ISSN: 2410-387X.
doi: 10.3390/cryptography5010011. URL:https://www.mdpi.com/2410-
387X/5/1/11.

[8] K. Huber, Codes over Gaussian integers, In: IEEE Transactions on
Information Theory, 1994, pp. 207–216.

[9] M. Knezevic, F. Vercauteren and I. Verbauwhede, Faster Interleaved

Modular Multiplication Based on Barrett and Montgomery Reduction

Methods,. In: IEEE Transactions on Computers, vol. 59, no. 12, pp. 1715-
1721, Dec. 2010.

[10] A. Koval and B. S. Verkhovsky, Analysis of RSA over Gaussian

Integers Algorithm. In: Fifth International Conference on Information
Technology: New Generations (ITNG), Apr. 2008, pp. 101–105. doi:
10.1109/ ITNG.2008.44.

[11] A. Koval, Security systems based on Gaussian integers: Analysis of basic

operations and time complexity of secret transformations. Dissertation,
New Jersey Institute of Technology, 2011.

[12] A. Koval, Algorithm for Gaussian Integer Exponentiation. In: Infor-
mation Technology: New Generations. Springer International Publishing,
2016, pp. 1075–1085.

[13] C. Martinez, R. Beivide, and E. Gabidulin, Perfect Codes for Metrics

Induced by Circulant Graphs. In: IEEE Transactions on Information
Theory 53.9, Sept. 2007, pp. 3042–3052.

[14] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography, CRC Press, 2001. ISBN: 0-8493-8523-7.

[15] P. L. Montgomery, Modular multiplication without trial division, In:
Mathematics of computation, 1985, pp. 519–521.

[16] D. Rohweder, J. Freudenberger, and S. Shavgulidze, Low-Density Parity-

Check Codes over Finite Gaussian Integer Fields. In: 2018 IEEE Interna-
tional Symposium on Information Theory (ISIT), June 2018, pp. 481–485.

[17] M. Safieh and J. Freudenberger, Montgomery Modular Arithmetic over

Gaussian Integers. In: 24th International Information Technology Con-
ference (IT), Zabljak, Montenegro, Feb. 2020.

[18] M. Safieh and J. Freudenberger, Montgomery Reduction for Gaussian

Integers. In: Cryptography, Jan. 2021.

[19] M. Safieh, J. Thiers, and J. Freudenberger, A Compact Coprocessor

for the Elliptic Curve Point Multiplication over Gaussian Integers. In:
Electronics, 2020.

[20] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special

Gaussian Integer Moduli. In: 29th IEEE Symposium on Computer
Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.

VI. APPENDIX

A. Montgomery Integer Reduction

The Montgomery reduction for integer numbers is described

in Algorithm 4. It replaces the calculation of the modulo

operation mod m by mod R, where R > m is a power of

two, hence replacing the modulo operation with truncation. For

using such a reduction, integer numbers have to be mapped to

the Montgomery domain. Given an integer input x, this can

be mapped to Montgomery domain as follows:

X = xR mod m. (34)

The reduction function µ(X) determines the backward trans-

formation from the Montgomery domain, because µ(X) =
xRR−1 mod m = x mod m.

Algorithm 4 Montgomery Reduction Algorithm for Integer

Numbers [15].

input: Z, with 0 ≤ Z < mR, m′ = −m−1 mod R, and

R = 2l ≥ m
output: M = µ(Z) = ZR−1 mod m

1: t← Zm′ mod R
2: q ← (Z + tm) divR
3: if (q ≥ m) then

4: M ← q −m
5: else

6: M ← q
7: end if

8: return M

Typically, all variables are mapped at the beginning of the

calculation into the Montgomery domain using this reduction

function as

X = µ(xR2) = xR2R−1 mod m = xR mod m, (35)

since only 1 precomputed value R2 mod m is required. Hence,

a multiplication by R2 and a full Montgomery reduction

are required for the forward transformation to Montgomery

domain, while a full Montgomery reduction is needed for the

backward transformation from the Montgomery domain.

B. Montgomery Reduction for Gaussian Integers

The following algorithm describes Montgomery reduction

for Gaussian integers according to [18]. Please note that

Montgomery domain transformations for Gaussian integers are

computed the same way as integer numbers.

Algorithm 5 Montgomery Reduction Algorithm for Gaussian

Integers [18].

input: Z = XY , π′ = −π−1 mod R,R = 2l > |π|/
√
2

output: M = µ(Z) = ZR−1 mod π

1: t← Zπ′ mod R
2: r′ ← (Z + tπ) fdivR
3: if (|r′| < |π| (

√
2− 1)/

√
2) then

4: α← 0
5: else if (|r′| < |π| /

√
2) then

6: α← argminα̂∈{0,±1,±i} |r′ − α̂π|
7: else

8: α← argminα̂∈{±1,±i,±1±i} |r′ − α̂π|
9: end if

10: M ← r′ − απ
11: return M

C. Barrett Reduction for Gaussian Integers using Manhattan

Weight

The following algorithm is a modified version of Alg. 2

using Manhattan weight as described in Section IV-A.

Algorithm 6 Barrett reduction for any Gaussian integer z and

the modulus π 6= 0 with |z| ≤
∣

∣π2
∣

∣ , where |Re {π}| < βk,

|Im {π}| < βk, and β is the chosen basis. The Gaussian

integer µ = βk+γ cdiv π can be precomputed and stored,

where γ ≥ k + 3 and δ ≤ −3.

input: Gaussian integers z, µ, π, integer numbers β, γ, δ
output: r = z mod π

1: q1 ← z cdiv βk+δ

2: q2 ← q1µ
3: q3 ← q2 fdiv β

γ−δ

4: r1 ← z mod βγ−δ

5: r2 ← q3π mod βγ−δ

6: r′ ← r1 − r2
7: α← argminα̂∈{0,±1,±i,±i±i} ‖r′ − α̂π‖
8: r ← r′ − απ
9: return r

